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Abstract 

The misorientation angle is the simplest characteristic of 
the difference between orientations of two crystallites in 
a polycrystalline material. Another is the corresponding 
rotation axis. These quantities can also be determined 
when crystallites are of different types and possibly 
different symmetries, as in multiphase materials. With 
the assumption that crystallites are randomly oriented, 
distributions of misorientation angles and corresponding 
rotation axes are calculated. They depend on the 
symmetries of the crystallites and on the choice of 
bases of the crystal coordinate systems. All pairs of 
crystallographic point groups are considered. The 
approach can also be applied to non-crystallographic 
symmetries. The results can serve as reference func- 
tions for distributions corresponding to real materials. 
In the derivation, asymmetric domains of misorientation 
distributions are determined by choosing among 
equivalent rotations those with the smallest rotation 
angles. The property of Rodrigues parameterization of 
rotations is used, allowing the faces of the domains to be 
planar. Forms of the distributions follow from the 
shapes of these domains. The asymmetric domains are 
also applicable in the case of rotation functions, i.e. 
correlations of two mutually rotated Patterson func- 
tions. 

1. Introduction 

A simple way to define the terms orientation and 
misorientation of objects (crystallites) is by choosing a 
laboratory (sample) Cartesian coordinate system and 
attaching Cartesian coordinate systems to the objects. 
The orientation of an object can be defined as the 
rotation applied to the laboratory coordinate system that 
gives a coordinate system with axes in the same 
directions as the axes of the system of the object. 
Analogously, the misorientation of two objects is 
determined as the rotation applied to the coordinate 
system of the first object that leads to a system with axes 
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in the same directions as the axes of the system of the 
second object. Thus, formally, the orientation of an 
object can be treated as the misorientation between the 
laboratory coordinate system and the object. Therefore, 
results concerning misorientations are equally applic- 
able to orientations although their meaning is special 
because one of the objects is the unique laboratory 
coordinate system. 

A rotation can be determined by a rotation axis and a 
rotation angle. However, when the objects are sym- 
metric, a number of rotations correspond to the 
misorientation and these, and generally any parameters, 
are not unique. To make the parameters unique, instead 
of the whole rotation space, one considers a certain part 
of it in which each physically distinct misorientation is 
represented only once. Many different names have been 
used for this region, e.g. asymmetric domain (or unit or 
region), symmetrically equivalent area, fundamental 
zone, MacKenzie cell. There, we use the first term as 
most suitable for the context of this paper. For some 
particular methods of determining the asymmetric 
domains, see Tollin, Main & Rossmann (1966), 
Pospiech (1972), Pospiech, Gnatek & Fichtner (1974), 
Rao, Jih & Hartsuck (1980), Bonnet (1980), Zhao & 
Adams (1988), Heinz & Neumann (1991) and Yeates 
(1993). 

The simplest characteristic of misorientation is the 
smallest rotation angle of the equivalent rotations. It is 
called the misorientation angle. The first problem that 
we are concerned with is what the distribution of the 
misorientation angles is when the orientations of 
objects are random. Another problem is the distribu- 
tion of misorientation axes (i.e. axes of rotations with 
the smallest rotation angles), again for randomly 
oriented objects. These distributions are influenced 
by symmetries of objects. To take into account all 
distinguishable configurations, it is sufficient to con- 
sider only proper symmetry operations. There is, 
however, a certain viewpoint from which improper 
rotations should also be included. This is considered in 
the last section of the paper, whereas, in the first four 
sections, all symmetry operations are assumed to be 
proper and all coordinate systems to be of the same 
kind (right-handed). 
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The issues of misorientation-angle and misorienta- 
tion-axis distributions have been addressed previously 
but only in the case of objects of one type (like 
crystallites in single-phase materials). MacKenzie & 
Thomson (1957) estimated the misorientation-angle 
distribution for octahedral symmetry numerically by 
the Monte Carlo method. MacKenzie (1958) and 
Handscomb (1958), using considerably different 
approaches, obtained an explicit formal expression 
for that distribution. The misorientation-angle distribu- 
tions for cyclic and dihedral symmetries were reported 
by Grimmer (1979). The distribution of misorientation 
axes for octahedral symmetry was presented by 
MacKenzie (1964). Morawiec (1995, 1996) gave 
both types of distribution for all symmetries in three 
dimensions.* This paper is focused on the case for 
different symmetries of misoriented objects. It 
corresponds directly to two-phase polycrystalline 
materials with different crystallographic symmetries 
of phases. Distributions of misorientation angles and 
misorientation axes are tools in analysing inter- 
crystalline misorientations and geometric features of 
grain boundaries (cf. Haessner & Sztwiertnia, 1988; 
Plutka & Hougardy, 1991; Gertsman, Tangri & 
Valiev, 1994). They have been used in investigations 
of orientation relationships between nuclei or growing 
grains and the matrix in the process of recrystallization 
and are equally important in studying the relationship 
between orientations of emerging grains and parent 
orientations in phase transformations. The model 
distributions are references for those that occur in 
real materials and are influenced by crystallographic 
textures and correlations between orientations of 
neighbouring grains. Because of new experimental 
techniques allowing measurements of large numbers of 
individual orientations (cf. Adams, Wright & Kunze, 
1993), such statistical results are especially important. 

Although we are interested in crystallites in multi- 
phase polycrystalline materials, the results concern all 
symmetric objects in three dimensions. In particular, 
those related to asymmetric domains are fully applic- 
able in the relatively close area of the rotation function 
defined as the correlation of two mutually rotated 
Patterson functions (Rossmann & Blow, 1962; Tollin 
& Rossmann, 1966). The function is used to search for 
structurally identical or similar molecular subunits 
within large molecules. Symmetries of the rotation 
functions are of the same kind as the symmetries of 
misorientation distributions. 

It is relatively easy to determine the asymmetric 
domains when Rodrigues parameters of rotation are 
used. What matters here, however, is that in this 
parameterization it is straightforward to calculate the 

* When writing the account on misorientation-angle distributions 
(Morawiec, 1995), the author was unaware of Grimmer's (1979) 
communication. 

misorientation-angle distributions and distributions of 
rotation axes based on shapes of appropriately chosen 
domains. The Rodrigues parameters {ri,r2, r 3} of 
rotation (also called symmetric Euler parameters or 
Gibbs vector) are given by r / = tan(w/2)k", where 
09 (0 < w < rr) is the rotation angle and/d (i -- 1,2, 3) 
are Cartesian components of the unit vector k 
determining the rotation axis.* The three parameters 
will be briefly denoted by one vector symbol r. All 
possible rotations fill infinite three-dimensional 
'Rodrigues space' but every two antipodal points at 
infinity correspond to one rotation (by zr). Vectors 
representing mutually inverse rotations differ by their 
sign. Composition of rotations rl and r 2 is given by 
r 2 o r I = (r I + r 2 -- r I × r2)/(1 -- r 1 • r2). The Rodri- 
gues parameterization has a special property making it 
suitable for the determination of asymmetric domains 
based on the misorientation angle. Let the angular 
distance between r 1 and r 2 be the smallest rotation 
angle of rotations leading from r 1 to r 2. In terms of 
Rodrigues vectors, it is given by 2arctan[lr 2 o ( - r l ) [ ] .  
Let two different points be distinguished. Points at the 
same angular distance to each of them constitute two 
planes (in the Euclidean sense) in the Rodrigues space. 
For purposes of this paper, only planes equidistant to 0 
and r = tan(to/2)k are needed; they are given by 
t an± l (w /4 )k+y ,  where y is an arbitrary vector 
perpendicular to k (cf. Frank, 1988; Morawiec, 1995). 

Let two neighbouring crystallites have lattice sym- 
metries described by point groups G L and G R. With 
Rodrigues vectors s L and s R corresponding to elements 
of GL and G R, points rL and r R representing orientations 
of the crystallites are equivalent to st. o r L and sR o rR, 
respectively. The misorientation between the crystal- 
lites (the rotation leading from r R to rt.) is represented in 
the Rodrigues space by the point r = rL o (-rR).  It is 
equivalent to s L o rL o ( - rR)  o (-sR) -- sL o r o (-sR). 
This also means that points r and s L o r o s  R are 
equivalent. Thus, the direct product (G L, Gn) acts in 
the space of rotations and divides it into classes of 
equivalent points. The asymmetric domain constitutes a 
suitably chosen set of unique representatives of the 
classes. 

For a one-phase material, both s L and s R are 
elements of  the same symmetry group. The known 
results for GL = GR (MacKenzie, 1958, 1964; 
Handscomb, 1958; Grimmer, 1979; Morawiec, 1995, 
1996) constitute special cases of those considered in 
this paper with GL and G R allowed to be different. 
What matters, however, is that most of the 
distributions for G L # GR can be reduced to those 
already published for G L = G R. 

* The components of the unit vector indicating the rotation axis are the 
same in three orthonormal coordinate systems: initial, final and that in 
which the Rodrigues vector is determined and, thus, it is not necessary 
to specify the system when the rotation axes are considered. 
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The case of the one-phase material, i.e. with all 
crystallites of the  same kind, has two special features. 
The first of them concerns their misorientation 
distribution. Because two misoriented objects are 
indistinguishable, their roles can be exchanged and, 
hence, values of the distribution at mutually inverse 
rotations (i.e. at opposite points r and - r  of the 
Rodrigues space) are the same. Therefore, these 
rotations are also considered to be equivalent and, 
thus, the asymmetric domain is half the size of that in 
the general case.* This additional 'symmetry' ,  
however, does not influence the distributions of 
misorientation angles and misorientation axes and, 
thus, it is immaterial for the main purpose of this 
paper. It is trivial to take it into account when the 
domain is sought. 

As for the second feature, because the crystallites 
are indistinguishable, the crystal coordinate systems 
must be attached to each of them in the same way. 
Therefore, there exists a natural and unique choice 
for the reference alignment (or reference misorienta- 
tion corresponding to 0). On the other hand, when 
the crystallites are of different types, there are 
various possible settings of the crystal coordinate 
systems and the reference misorientation is not 
unique (cf. Fortes, 1984). For example, in the case 
of misorientations between h.c.p, and b.c.c, phases, 
bases of the crystal coordinate systems can be chosen 
in the standard way, i.e. (disregarding directions), 
for misorientation corresponding to 0, the b.c.c. 
(001) plane is parallel to h.c.p. (0001). In some 
special cases, however, the other choices would be 
interesting, e.g. to have the b.c.c. (110) plane 
parallel to the h.c.p. (0001) plane as in the Burgers 
relation observed in b.c.c, to h.c.p, phase transfor- 
mations in zirconium, titanium and their alloys (cf. 
Williams, Cahn & Barret, 1953). 

The possibility of setting coordinate systems in 
various ways means that for objects with different 
symmetries the asymmetric domain is not 
'fundamental'. Its shape and also the form of 
distributions of misorientation angle and misorienta- 
tion axis depend on the choice of the reference 
misorientation. Therefore, although the method of 
determining the domains and the distributions is 
general, particular results presented below are valid 
only for the special setting of the crystal coordinate 
systems. It will be described as the standard choice 
of the systems. It is based on the table of 
stereograms of three-dimensional crystallographic 
point groups printed in International Tables for  
X-ray Crystallography (1952, pp. 26-27) with 
horizontal x axis and vertical y axis, both in the 
plane of the paper, and with the z axis perpendicular 

*Also the rotation function has that symmetry when it is an 
autocorrelation of the Patterson function (Moss, 1985). 

to that plane. The first of the two settings for the 
monoclinic system is taken. 

2. Pairs without  non-trivial  common symmetries  

A symmetry element present in both GL and G R is 
considered to be a common symmetry element in 
specified coordinate systems if it has the same 
parameters when expressed explicitly in both coordi- 
nate systems. To give an example, let two crystals 
have symmetries described by the crystallographic 
point groups T and C 3. Each of these groups 
contains symmetry with a threefold rotation axis. If 
in the two crystal coordinate systems this axis is 
along the same line (e.g. the z axis), this symmetry 
element is considered to be common. But it is not a 
common element if the systems are chosen in the 
standard way with the threefold axis of C 3 along the 
z axis and the twofold rotation axes of T along the 
axes of the coordinate aystem. 

If the pair (GL, GR) has no common symmetry 
elements other than the identity (0), each misorienta- 
tion is represented in the Rodrigues space by 
N : # GL # GR different symmetrically equivalent 
points, where #G denotes the order of the group 
G. Those equivalent to 0 are given by s L o0 os  R = 
SLoSR. They will be described as distinguished 
points. The space can be divided into regions with 
boundaries determined by points at the same angular 
distance from the two nearest distinguished points. 
Points inside such a region are closer to one s L o s R 
than to any other. The method of obtaining these 
regions is the same as the tessellation into the so- 
called 'Voronoi polyhedra'. Similar ideas for Euler- 
angle parameterization in the context of rotation 
functions was presented by Yeates (1993). In the 
case of the Rodrigues parameters, regions' bound- 
aries are planar, owing to the forementioned fact that 
points equidistant to two distinguished points lie on 
planes. The angular distance of a given point r from 
0 is the same as the distance between sL o r o s R and 
sL o s R. Thus, disregarding points at the boundaries, 
each region contains representatives of all classes of 
non-equivalent points and each class is represented 
only once in the region.* Therefore, each of the 
regions can serve as the asymmetric domain. It is 
most convenient to choose the one surrounding 
0 o 0 : 0 because points of this region correspond 
to rotations with the smallest rotation angles. This 
asymmetric domain will be used to obtain the sought 
distributions. 

In practice, to determine the domain, all dis- 
tinguished points sL o s R must be taken into considera- 

*To take boundary points into account, additional rules would be 
necessary. But these points constitute a set of measure 0 and do not 
play any role in calculating the sought distributions. 
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tion.  Exc lud ing  0 o 0, they  are o f  the f o r m  I i tan(coi/2 ), 
w h e r e  i = 1, 2 . . . . .  ( N - 1 ) ,  ! i are uni t  vec tors  and  
0 < o2 i _< zr. The  p lanes  equid is tan t  to the ith poin t  and  
to 0 are g iven  by  ((li; tan~l(coi/4)), w h e r e  the symbo l  
(l; d )  deno tes  he re  (and later  on) a p lane  g iven  by  
all points  x sat isfying i .  x = d >__ 0, i .e. the p lane  
pe rpend icu l a r  to the uni t  vec to r  i at a d is tance  d 
f r o m  0, in the d i rec t ion  ind ica ted  by  the vector .  Fo r  
0 < co < zr, tan(co/4) < 1 < t a n - l ( t o / 4 )  and,  m o r e o v e r ,  
tan+l ( r r /4)  = 1. Thus ,  the a s y m m e t r i c  d o m a i n  c o m -  
posed  o f  points  located  c loser  to 0 than to any  o the r  
d i s t ingu ished  poin t  is c o m m o n  o f  all ha l f -spaces  

d e t e r m i n e d  by  the cond i t ions  li.x<_tan(coi/4 ) i f  
0 < co i < ~r and  by 4- ! i • x < 1 i f  to = zr. 

2.1. Misorientation-angle and misorientation-axis 
distributions 

O n c e  the d o m a i n  based  on  rota t ions  wi th  the smal les t  
ro ta t ion  angles  is k n o w n ,  it is re la t ive ly  easy  to obta in  
the miso r i en ta t ion -ang le  d is t r ibut ion  and  the dis t r ibu-  
t ion o f  c o r r e s p o n d i n g  ro ta t ion  axes  for  r a n d o m l y  
o r i en t ed  crystal l i tes .  The  p rocedu re s  a l lowing  the 
ca lcula t ion  o f  these  d is t r ibut ions  f r o m  the shape o f  the  
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Fig. 1. Results for the pair (C 3, T) for reference alignment with the 
same line (z) as the threefold axis of C 3 and as twofold axis of T. (a) 
Projections of the asymmetric domain on the planes r 3 = 0 and 
r I = 0 of the Rodrigues space. Third coordinate, r 3, of vertices 
marked by o [o] is tan(~r/12) [-tan(zr/12)]. Dashed lines corre- 
spond to 'invisible' edges. (b) Misorientation-angle distribution. (c) 
Stereographic projection of the upper hemisphere (z > 0) of the 
distribution of misorientation axes q. The mirror image with respect 
to the vertical axis gives the projection of the lower hemisphere. 
The isolines are equidistant in the range of the distribution: 
isoline(i) = min(q) + (i +0.5)[max(q) - min(q)]/10, i=0,  1 . . . . .  9, 
with rain(q) = 2.1520 x l 0  -2  and max(q) = 1.8040 x l0 -I . [Com- 
paring this with extrema given by MacKenzie (1964) or Morawiec 
(1996), different normalizations of q must he taken into account.] 
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domain are described elsewhere (Morawiec, 1995, 
1996). The first step is to find the density of random 
orientations in the Rodrigues space. It is equal to 
the invariant volume of the space d V ( r ) - -  
{r/[rr(1 + r2)]} 2 drd2k, where r = ( r .  r) 1/2 -- tan(w/2) 
is the distance of the point r from 0 and dzk denotes the 
infinitesimal element on the unit sphere. The value of 
the misorientation-angle distribution p at fixed o9 is 
calculated by integrating the density over all rotation 
axes of misorientations contained inside the asymmetric 
domain. With the volume of the whole rotation space set 
to 1, the volume of the asymmetric domain equals 1IN. 
If the normalization coefficient of N is taken into 
account, the general result can be formally expressed as 

p(og) = [N/ (2~) ]  sin2(og/2) x[tan(w/2)], 

where x(r) is the solid angle based on the part of the 
sphere of radius r contained inside the asymmetric 
domain. When angles are given in degrees, p should be 
replaced by the distribution og[deg]--->(zr/180)p(ogzr/180). 

The distribution q of rotation axes at k is equal to N 
times the integral of the density over angles of these 
rotations that are represented by Rodrigues vectors 
r -- rk and located inside the domain. It is given by 

q(k) = [N/(Zrr2)]( arctan[2(k)] - 2(k)/{1 + [2(k)]2}), 

where 2(k) is the distance from point 0 to the boundary 
of the domain in the direction k. If (1; d) is the bounding 
plane such that k .  1 > 0, then 2(k) = d / ( k .  1). The 
distribution is normalized over all directions on the 
sphere. 

The following general remark allows one to reduce 
significantly (roughly by halo the number of pairs 
(G L, GR) that should be analysed: the asymmetric 
domain of the pair (G R, GL) can be obtained by taking 
the inversion of the domain of (GL, GR) with respect to 
the origin of the coordinate system in the space of 
Rodrigues parameters. Based on the above expressions 
for the distributions p and q, it can easily be noticed that 
the misorientation-angle distributions of (GL, GR) and 
(GR, GL) are identical and the misorientation-axis 
distributions are related by qtOR,OL)(k) = q~6r.6R)(--k). 

2.2. Example: (C s, T) 

Let us consider the pair (C3, T) with crystal 
coordinate systems chosen in the standard way. There 
are no common symmetry elements other than the 
identity. Points {0,0 ,+tan(rr /6)}  of the Rodrigues 
space represent symmetry operations of C3 and are 
equivalent to 0. Because of them, the asymmetric 
domain is bounded by two planes ((0, 0, + l ) ;  a) ,  where 
a = tan(zr/12) - 2 - 31/2. Moreover, with the elements 
SL = {0, 0 , -  tan(zr/6)} of 6"3 and SR = {1, 1, 1} of T, the 
distinguished point s L o s R has coordinates { 1, a, a} and 
its distance from 0 is b = (1 + 2a2) 1/2. Its presence 
leads to another bounding plane; it is given by 

((a, 3 , 3 ) ; c ) ,  where o e = l / b ,  / 3 = a / b  and c =  
tan[arctan(b)/2] =/3(1 + a)/(1 - a). In this way, a 
complete list of eight extra bounding planes is obtained. 
Their parameters are (.(or, +/3, ~/3); c), ((/3, + %  

/3); c), ((-or, +/3,-T-/3); c) and ((-/3, +c~, +/3); c), 
where either upper or lower signs are valid. The 
shape of the domain is shown in Fig. l(a).  

2.2.1. Misorientation-angle distribution. The points 
of interest on the 'angle'  axis are of the form 2 arctan(r,.) 
(i = 1 . . . . .  5), where r I and r 2 are distances (from 0) of 
the faces of the domain, r 3 and r 4 are distances of the 
edges, and r s is the distance of all vertices. They are 
given by 

r I = a, r 2 = c ,  r 3 = 3 1 / 2 a ,  r 4 = a V 2 ,  r5 = 5 1 / 2 a .  

Angles between normals to the three types of neigh- 
bouring plane are 

31 = arccos(/3), 32 = arccos[/3(2ot - /3)] ,  

33 = arccos(ot 2 - 2/32). 

Let ~i ( i - -  1, 2) be r-dependent quantities defined by 
Ol i "-- o t i ( r  ) - -  arccos(ri/r ). With r 0 = 0, the function X is 
given by 

J 
x ( r ) = ~ , x i ( r )  for 0-1 < r < r / ( j =  1 . . . . .  5), 

i=1 

where 

Xl (r) = 4rr, 

Xz(r) = -2Sl(cq) ,  

x3(r) - -  - -851(ot2)  ' 

x4(r) -- 8S2(t~1, t/2; 31) q- 4S2(t/2, or2; 33), 

xs(r) = 482(o~2, o~2; 32). 

SI(p) is the solid angle based on a spherical cap of 
angular radius p: 

Sl(p) = 2zr[1 - cos(p)]. 

Moreover,  S2(p 1, P2; ~) is the solid angle based on the 
common of two spherical caps of angular radii Pl and P2 
and angular distance ~ between their centres. It can be 
expressed as 

S2(P l ,  P2; ~) = 2[rr - C(pl, P2; ~) - -  c°s(Pl)C(Pl, ~; P2) 

- cos(pz)C(p2, ~; Pl)], 

where C(pl, P2; ~) = arccos{[cos(~) - cos (p l ) cos (p2 ) ] /  
[sin(p1) sin(p/)]} [see Handscomb (1958) or Morawiec 
(1995)]. The distribution (rr/180)p(ogrr/180), i.e. with 
argument given in degrees, is displayed in Fig. l(b). 
The corresponding maximum misorientation angle is 
61.8561 °. The mean misorientation angle and the 
standard deviation are 36.4058 and 10.5826 °, 
respectively. 

2.2.2. Distribution of  rotation axes. Let (k 1, k z, k 3) 
be components of a unit vector k determining a rotation 



278 MISORIENTATION ANGLES AND MISORIENTATION AXES 

axis. To obtain the distribution q of rotation axes 
corresponding to the smallest rotation angle, it is 
sufficient to know the function 2. It is given by 

2(k) = min{rl/lk3l, r2/d2}, 

where 

d 2 = max{ak I +/3k 2 + flk 3 , /5k I -+- ctk 2 q:flk 3, 

-- otk 1 + ~k 2 ~f lk  3, - ~ k  I 4- otk 2 + 15k3}. 

In each of the four arguments of max, either upper or 
lower signs are valid. The stereographic projection of q 
is given in Fig. l(c). 

3. Pairs with common symmetries 

It is easy to notice that the approach applied to pairs 
without common symmetry elements must be modified 
when such elements are present. It follows directly from 
the fact that some of the products sL o s R are no longer 
different. There are distinguished points overlapping 
each other and for them the planes of equidistant points 
cannot be constructed. From another viewpoint, for a 
given common symmetry operation s, the conjugate 
points r and s o r o ( - s )  have equal rotation angles. 
Thus, it is impossible to built asymmetric domains of 
points with smallest rotation angles because different 
but equivalent points with the same angle exist, and 
additional surfaces to separate such points are 
necessary. 

However, in order to calculate the misorientation- 
angle and the misorientation-axis distributions, it is 
sufficient to consider the Voronoi tessellation of the 
Rodrigues space based on different distinguished points. 
The cell surrounding 0 will be called the 'large cell'. It 
contains misorientations with the smallest rotation 
angles but there are still equivalent points (with equal 
angles) inside it. The sought distributions can be 
obtained based solely on the shape of the large cell. A 
small additional effort allows determination of asym- 
metric domains. The following subsection contains 
some details concerning equivalences within the large 
cell and clarifies a way of determining locations of the 
additional surfaces cutting off the asymmetric domain 
from the cell. 

3.1. Auxiliary construction 

In order to investigate the role of the common 
symmetry elements, let us concentrate on the case when 
rotations with the same rotation axis determined by the 
unit vector ! are applied on both sides of r but the axis is 
m-fold on the right side and n-fold on the left side. To 
have a nontrivial common symmetry element, the 
numbers m and n are assumed to have a nontrivial 
( #  1) common divisor. Thus, points symmetrically 
equivalent to r are of the form r '  -- sL o r o sR, where 

sR:tan( imrr/m)i  and sL=tan(inzr/n)l,  with ira: 
0 . . . . .  m - 1  and i n - 0  . . . . .  n - 1 .  Let a plane 
perpendicular to I in the Rodrigues space be determined 
by all r satisfying r .  ! -  t an (w/2)=  constant. A short 
calculation shows that r '  • 1 -- tan(o~/2 + imZr/m + 
in~r/n ). This means that the plane perpendicular to ! 
and located at a distance tan(w/2) from 0 is transformed 
onto a plane perpendicular to ! and at a distance 
[ tan(w/2 + (im/m + in/n)rr)l. Owing to the periodicity 
of tan, the number of overlapping planes (i.e. the 
number of planes with the same value of r '  • l) is equal 
to the number of different pairs (i m, in) satisfying 
(im/m + in/n)rr -- kTr (with k = 0, 1). This number, in 
turn, is equal to the largest common divisor of m and n, 
denoted here by E(m, n). The total number of pairs 
(ira, in) is ran. Thus, the number of different images of 
the initial plane is F(m, n) = mn/E(m, n). 

From a slightly different point of view, there are 
F(m, n) different distinguished points tan[kzr/F(m, n)]l, 
k = 0 . . . . .  F(m, n) - 1, equivalent to 0. The two points 
nearest to 0 are 4- tan[rc/F(m, n)]l. They give rise to the 
two surfaces ( + !; tan{:r/[2F(m, n)]}) bounding the 
zone of points close to 0. But there are still E(m, n) 
equivalent points inside that zone. 

To eliminate them, equivalences within the trans- 
formed plane must be considered. The image, r ' ,  is in 
the same plane as the initial point, r, when r'  • i - r • 1. 
Let c~ be the angle between projections h = 
r -  tan(w/2)l and h ' =  r ' - t a n ( w / 2 ) !  of the vectors r 
and r '  on the considered plane. For r '  satisfying 
r ' . i - - r . l ,  there occurs r ' . r ' - - r . r  and, thus, 
h ' . h ' =  h . h .  Hence, for r not collinear with the 
rotation axis, one has cos(tr) = ( h ' . h ) / ( h . h )  = 
cos(2im:r/m ), where i m (0 < i m < m) satisfies iron + 
i n m - - k m n  for i n - - 0  . . . . .  n - - 1  and k = 0 , 1 .  This 
means that a -- 2rrj/E(m, n), j -- 0 . . . . .  E(m, n). Thus, 
all E(m, n) equivalent points on the considered plane are 
at the same distance from the axis 1; they are distributed 
symmetrically around that axis and, therefore, the plane 
can be divided radially into E(m, n) equivalent regions 
with angles between dividing half-lines equal to 
27r/E(m, n). 

In summary, when symmetries with the same rotation 
axis (of foldness m and n) occur, the task of finding the 
asymmetric domain can be simplified by the following 
rules: There are two bounding planes perpendicular to 
the axis at a distance tan{zr/[2F(m, n)]} from O. More- 
over, the region between these planes can be radially 
divided into E(m, n) identical and equivalent parts, of 
which one can be selected as the domain. 

The latter division is caused by the presence of the 
common E(m, n)-fold rotation axis. It can be performed 
by introducing E(m, n) symmetrically distributed half- 
planes having the rotation axis as their common edge, 
with the dihedral angle between closest pairs equal to 
2rr/E(m, n). Positions of the dividing half-planes in the 
Rodrigues space are not unique but, on the other hand, 
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when there is more than one axis corresponding to 
common symmetry operations, the half-planes must be 
properly arranged. It is not sufficient to establish proper 
dihedral angles and to satisfy the condition that the half- 
planes have the axes as their edges; the asymmetric 
domain must be built of such points r that application of 
all angle-preserving symmetry operations of the type 
s o r o ( -s )  to the points of the domain gives the large 
cell. All common symmetry operations constitute a 
group. It is a subgroup of both GL and G R. Thus, the 
subgroup determines the positions of the half-planes. If 
it is known, one can easily deduce which points of the 
large cell are equivalent and, hence, where the half- 
planes should be located. 

3.2. Notation 

The following notation allows us to make the 
description of the domains more concise. Let us assume 
that (G[, Gk) is a pair without common symmetry 
elements. The expression 

(Gz., GR) ---> (G~, G~)/Gc 

will be used when the asymmetric domain of (Gj., G,~) 
constitutes the large cell for (G L, GR) and a group Gc 
determines equivalences [due to (GL, GR)] between 
points of the large cell. In this section, where only 
proper rotations are considered, G c is simply the group 
of common elements of G m and G R. In this case, the 
relation between the volumes of the domains of (GL, GR) 
and (G~,G'n) can be expressed by #GR#GL= 
#Gc#G'R#G't . 

For simplicity, if one of G,~ and G~. is the trivial 
symmetry group C I , instead of (C I, G) or (G, CI), only 
the symbol G will be used; if Gc is trivial CI, its symbol 
and the slash ('/') will be omitted. 

At this point, the crucial fact is that once the 
asymmetric domain of (G~., Gk) is known, it is 
straightforward to deduce from this notation the form 
of the domain of the pair (GL, GR). Moreover, the 
misorientation-angle distribution and the distribution of 
the corresponding axes for (GL, GR) are the same as for 
(G~, G,~). The latter statement follows from the fact that 
the geometric figure of the large cell has (at least) the 
point symmetry of the common subgroup. Transforma- 
tion of the outer planes bounding the asymmetric 
domain (i.e. these that are not through 0) by elements 
of the subgroup gives the planes bounding the large cell. 
But these outer planes of the domain constitute the only 
factor influencing the sought misorientation-angle and 
misorientation-axis distributions. Therefore, to obtain 
the distributions, the large cell can be used. In order to 
have proper normalization of the distributions, the 
normalizing factor must correspond to the volume of the 
large cell. Thus, N is equal to #G'L#G'n or 

N = #GL#GRI#Gc. 

This guarantees that the formulae for p and q for the 
case without common symmetry elements also are 
correct when such elements are present. 

3.3. Special case: subgroups 

When one of the groups, say G L, is a crystallographic 
subgroup of the other one (GR), the coordinate system 
can be arranged in such a way that all elements of the 
subgroup are common symmetry operations. The large 
cell of (GL, GR) is nothing but the asymmetric domain of 
the group G R --~ (C I, Ge) alone. Thus, there occurs 
(GL, GR)--> GR/GL. The misorientation-angle distribu- 
tion and the distribution of rotation axes of the system 
are the same as those for the higher symmetry G R. In 
particular, if G R = G -- G L, then (G, G) ~ G/G. (The 
additional equivalence between r and - r  is not taken 
into account.) 

In order to give an example for the case with one 
group being subgroup of the other, let us consider the 
pair (C 3, T) once more. This time, the threefold axes of 
both symmetries are assumed to have the same direction 
in the state of reference alignment (non-standard 
arrangement). Therefore, there are three half-planes 
in the Rodrigues space with a threefold axis as their 
common edge and dihedral angles of 2zr/3 and, thus, the 
appropriate domain for (C 3, T) is one third of that for 
tetrahedral symmetry, i.e. of the regular octahedron 
with faces at a distance 31/2/3 from its centre. Hence, 
the corresponding misorientation-angle distribution and 
distribution of rotation axes are the same as for 
tetrahedral symmetry alone. The appropriate formulae 
and graphs for this symmetry can be found elsewhere 
(Morawiec, 1995, 1996). Because the domain and the 
distributions are different to those obtained in §2.2, this 
example is simultaneously a visualization of the 
previously given statement that the shape of the 
asymmetric domain, and also misorientation-angle and 
misorientation-axis distributions, depends on the choice 
of the crystal coordinate systems. 

4. Solutions for proper crystallographic symmetries 

To solve the problem for proper crystallographic 
symmetries, all possible pairs of 11 crystallographic 
groups consisting of proper symmetry operations must 
be considered. Most of these pairs satisfy subgroup- 
group relationship, i.e. one group is a crystallographic 
subgroup of the other. [See e.g. the subgroup diagram 
for crystallographic groups in International Tables for 
X-ray Crystallography (1952), pp. 36-37.] Although it 
is tempting to take advantage of this fact, it would be 
necessary to choose the crystal coordinate system in 
such way that the subgroup-group relation is geome- 
trically satisfied as in the above (second) example for 
(C 3, T) and, thus, awkward crystal coordinate systems 
would have to be accepted in some cases. Therefore, 



280 MISORIENTATION ANGLES AND MISORIENTATION AXES 

Table 1. Asymmetric domains of the pairs (Gt., GR) with groups G L and G R containing proper symmetry operations 

The first column and first row contain groups Gt. and G R, respectively. Entries of the table correspond to the right side of the arrow --*. The large 
cell of (GL, GR) is the same as the asymmetric domain of the pair (group) given on the left side of the slash. The group on the other side of the 
slash determines the symmetry of sets of equivalent points within the large cell. The entries on the diagonal, i.e. for GR = G = Gt., are given by 
G/G, e.g. (0, O) --+ 0/0.  

0 T D6 194 D3 

c2 01c2 TIC2 0UC2 041C2 06 
C 3 (C 3 , O) (C 3, T) 061C 3 O12 031C 3 
c4 01c4 01c2 0,21c2 DJC4 D,2 
02 0/1)2 T/02 06/D2 04/02  D6/D, 
C6 (C3, 0)/C2 (C 3, T)/C2 06/C 6 0,2/C 2 06/C 3 
/)3 (C3, 0)/01 ((]'3, T)/DI D6/D3 Dl2/Di 
1)4 0/D4 0/02 D~2/D2 
06 (C 3 , 0)/02 (C3, T)/B 2 
T O/T 

c~ o~ 
C61C2 D21C2 
CdC3 06 
G21C2 D41C2 
06/C2 

c, c3 
C, lC2 c6 

Cl2 

further on, the standard choice of the systems will be 
assumed: for cyclic and dihedral symmetries, the 
principal axis is along the z axis and the twofold axis 
of the latter is along the x axis; for T and O, two- and 
fourfold axes, respectively, are along the axes of the 
coordinate system. 

The form of the asymmetric domain for combinations 
involving only cyclic symmetries follows directly from 
the 'auxiliary construction'. The region between the 
forementioned planes ((0, 0, 4-1); tan{rr/[2F(m, n)]}) 
represents the large cell of (C,,, C~). On the other 
hand, it is also the asymmetric domain of Ce(m.~). The 
common subgroup is Ce(m,n). With the introduced 
notation, these statements can be expressed by 

( c . ,  c . )  -+ c,,(.,,.)ICE(.,,.). 
Also, the pair (C m, D,) can easily be solved. Its large 
cell has the form of a prism with bases on planes 
((0, 0, +1); tan{Jr/[2F(m, n)]}) and faces determined by 
planes (4- (sin(im/m + iJn)zr, cos(im/m + iJn)zr, 0); 1). 
The prism is the same as that constituting the 
asymmetric domain of Dr(m,~). The group of common 
symmetry operations is Ce(m,~). The half-planes cutting 
the domain of Dr(,,,,n) have their edges on the principal 
axis. In the symbolic notation, the result has the form 

(C.,, Dn) -+ Dr~m.,,llCe<,,,.,,i. 
The domain for the pair (D m, D~) can be obtained by 
using the solution for (C,,,, D~) and by noticing that the 
only difference is due to an additional common twofold 
rotation axis along the x axis. This leads to another 
bounding plane (more precisely, to two half-planes); it 
is perpendicular to the z axis, this time. Formally, the 
result can be expressed as 

(DIn, 19.) -+ 0~.,..)10~,,,..), 
where D l represents the symmetry with a twofold axis 
along the x axis. 

For each of the already considered pairs, the 
distinguished points are the same as those of a single 
group. Among the remaining non-trivial pairs (i.e. 

those not satisfying the subgroup-group relationship in 
the standard arrangement), the same can be applied to 
(C4, T) and (D 4, T). For both pairs, the large cell is the 
same as the domain of the octahedral group; there 
o c c u r s  

(C4, T) ~ O/C 2 and (D 4, T) ---> O/D 2. 

The important point is that, in all above cases and 
those satisfying the subgroup-group relationship, the 
sought misorientation-angle and misorientation-axis 
distributions are determined by the corresponding 
group (G) on the left side of the slash (i.e. 
C,,, D n, T and O) regardless what is on the right 
side. This means that they can be obtained directly 
from the results for (G,G)--+ G/G.* Detailed 
accounts of these distributions have already been 
given (MacKenzie, 1958, 1964; Handscomb, 1958; 
Grimmer, 1979; Morawiec, 1995, 1996), and this 
means that the problem has already been solved for a 
large number of possible cases with different G R and 
G L as well. 

In order to obtain results for the remaining pairs, 
let us notice that in the standard arrangement the 
products (C 6, T), (D 3, T) and (D 6, T) differ from 
(C 3, T) by symmetry elements that are common 
symmetry elements for these pairs. Simple analysis 
shows that 

(C6, T) ---+ (Ca, T)/C2, (D 3, T) ---+ (C 3, T)/D l , 

(D 6, T) ~ (C 3, T)/D 2 

and, thus, solutions for these systems follow from the 
first example for (C 3, T). Finally, for the last four non- 
trivial pairs, there occurs 

( C  6, O) ~ ( C  3, O)/C2, (03 ,  O) ---9. (C3, 0 ) / 0 1 ,  

( 0  6, O)  ---+ ( C  3, 0 ) / 0  2. 

* For example, the distributions for (D 4, T) are the same as those for 
(0, 0). 



Therefore,. to complete the task for all pairs of 
crystallographic groups with proper rotations, it 
remains to consider (C3, O). This case is discussed in 
~4.1. All results are summarized in Table 1. 

4.1. The pair (C 3, O) 

The system (C3, O) is related to (D 6, O), which is the 
most interesting combination from the practical view- 
point owing to the application to metals with 'cubic' and 
'hexagonal' phases. It would be called 'hexagonal- 
cubic' in papers by Bonnet (1980) and Heinz & 
Neumann (1991). Worth noticing is the fact that, in 
the assumed configuration, different from the already 

( 

considered cases, vertices of the asymmetric domain of 
(C a, O) are at different distances from 0. Therefore, to 
calculate the misorientation-angle distribution, an 
additional formula for the solid angle based on a 
common one of three spherical caps is necessary. 

It is straightforward to find the first six planes 
bounding the asymmetric domain. Because of the 
threefold (of Ca) and fourfold (of O) rotation axes 
along the z axis, there exist bounding planes ((0, 0, +1); 
tan[zr/24]). Moreover, fourfold rotation axes (of O) 
along x and y axes lead to ((+1, 0, 0); tan[zr/8]) and 
((0, ~1, 0); tan[n'/8]), respectively. But there are still 
symmetrically equivalent points in the described region. 
To eliminate them, eight additional planes are required. 

r2 

! 

> 

r l  
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l 1 
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Fig. 2. Results for the pair (C 3, O). (a) Projections of the asymmetric 
domain. The third coordinate of vertices marked by o [.] is 
tan(zr/24) [-tan(zr/24)]. (b) Misorientation-angle distribution. (c) 
Distribution of axes corresponding to the smallest rotation angle. 
The isolines are as in Fig. l(c) with min(q) = 5.4355 x 10 -3 and 
max(q) = 2.7906 x 10 -I 
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These are the same planes as those given in the first 
example for (C3, T): ((or, 4-3, +-/3); c), ((/3, +-c~, 
T-/3); c), ((-0/, +/3, c), ((-/3, +0/, +/3); c). 
(Either upper or lower signs are valid.) The symbols 
a, b, c, ot and/3 denote the same quantities as in the case 
of ((73, T). The asymmetric domain is displayed in Fig. 
2(a). See also Heinz & Neumann (1991) for a stereopair 
of the domain of the 'cubic-hexagonal '  system (O, D6). 

4.1.1.  Misorientation-angle distribution. The essen- 
tial points on the 'angle'  axis are 2arctan(ri) (i = 
1 . . . . .  7), where r 1, r z and r 3 are distances (from 0) of 
the faces of the domain, r 4 and r 6 are distances of its edges, 
and r 5 and r7 are distances of vertices. They are given by 

r I = tan(rr/24), r z = tanUr/8), r 3 = c, 

r 4 -- ( ~  k- ~) , /2 ,  r5 "- ( ~  -k- ~ -k- ~ ) , / 2 ,  r6 __ a,/2, 
r 7 = (a + ~ + a ~ )  l/z. 

Angles between normals to the four types of neighbour- 
ing planes are 81 , 82 [the same as for (C 3,T)],  
83 =arccos(o0 and 84 = r  r/2. As before, 0/i ( i =  1, 2, 3) 
depend on r and are given by 0/i = arccos(ri/r).  With 
r 0 = 0, the formula for X takes the form 

) 
x(r) = ~ xi(r) for rj_ 1 < r < 5 (J = 1 . . . . .  7), 

i=1 

where 

xx(r) = 4n', 

xz(r) = -2S1(c~1), 

X3(r) = -4S1 (0/2), 

x4(r) -- -8S1(o~3) ' 

Xs(r) = 8Sz(°q, 0/2; 84) "~ 8S2(ff2, 0/3, 83) 

+ 8S2(0/1,0/3; 81), 

x6(r) = - 8 S 3 ( a l ,  ot 2, or3; 83, 81,84), 

XT(r) "-- 4S2(0/3, 0/3; 82). 

Here, S3(Pl, P2, P3; ~1, ~2, ~3) is the solid angle based on 
the common of three spherical caps with angular radii p~ 
(i = 1, 2, 3); the symbol ~k (k -- 1, 2, 3) denotes the 
angular distance between the centres of the caps with 
radii Pi and pj, where i -76 j -¢ k -¢ i. (For example, ~1 is 
the angular distance between the centres of caps with 
radii P2 and P3.) The function can be expressed as 

S3(Pl, P2,/)3; ~:1, ~2, ~3) 

= --rr -t- [S2(P 1 ,/)2; ~3) + $2(P2, P3; ~1) 

+ $2(P3, Pl; ~2)]/2 q-C°S(Pl)C(~2, ~3; ~'1) 

H- Cos(P2)C(~ 3, ~1; ~2) "3t- c°s(p3)C(~l,  ~2; ~3)- 

The outline of the derivation of this formula is given in 
Appendix A. The graph of the distribution 
(rt/180)p(oorc/180) is shown in Fig. 2(b). The maximum 
misorientation angle, the mean misorientation angle 

and the standard deviation are 56.6003, 33.2220 and 
11.0604 °, respectively. 

4.1.2.  Distribution o f  rotation axes. The appropriate 
function 2 has the form 

2(k) = min{rl/lk31, r2/max{Ikll ,  Ik21}, r3/d2}, 

where d 2 was given in the first example for (C 3, T). See 
Fig. 2(c) for the stereographic projection of the 
distribution q. 

5. Solutions for groups with improper symmetry 
operations 

The complete rotation space is composed of two 
separate components of proper and improper rotations. 
The relation (improper ro ta t ion)=  (proper rotation) o 
(a fixed improper rotation) provides a one-to-one 
correspondence between the components. Using it, a 
Rodrigues vector can be ascribed to an improper 
rotation. Thus, in the general description involving 
improper rotations, a misorientation is determined by a 
Rodrigues vector and a flag indicating to which of two 
'spaces'  it belongs. Additional rules would be necessary 
to write down the composition relation for vectors that 
may correspond to improper rotations. 

Before going further, let us mention that, despite its 
importance, there is some confusion concerning the role 
of the improper symmetry operations in texture 
analysis, particularly their influence on the shape of 
the asymmetric region. A correct and complete treat- 
ment of the subject is not to be found in the literature. 
Although the problem is not very complicated, there are 
some subtle elements involved. 

When improper symmetries are taken into account 
(i.e. the groups GR and GL are allowed to contain 
improper symmetry operations), objects without such 
symmetries occur in two distinguishable enantiomor- 
phous forms and there are two possible approaches for 
studying (mis)orientation distributions: 

1. ignore improper symmetries and consider the 
distinguishable forms as separate phases with their own 
characteristics, e.g. textures; 

2. extend the domain of distributions on both right- 
and left-handed forms, i.e. on both components of the 
complete rotation space. (The presence of improper 
symmetries means that there are mutually equivalent 
regions in separated components.) 

The first approach seems to be favoured by the 
texture community (cf. Bunge, 1982, pp. 100 ff.). When 
this approach is applied, there are four* 'misorientation 
spaces' to be considered. In the case of the second 
approach, there are only two such spaces, i.e. two 
components of rotation manifold; compared with the 
first approach, the handedness of misoriented objects is 

* Two types of chirality of the first object times two chiralities for the 
second object. 
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missing. This is not incorrect because misorientation, as 
it is defined, is not supposed to carry information about 
the original features of objects but only about their 
relative features. Knowing the misorientation, it is 
impossible to guess the orientation of an object and, 
analogously, it is impossible to guess its handedness 
unless orientation and handedness of the other object are 
known. 

In the special case, when the first object is the 
laboratory coordinate system, the difference disappears 
because the handedness of this system is a priori known. 
Thus, in the first approach, only two spaces remain and, 
in the second, (mis)orientation automatically carries the 
information on the handedness of the second object. 

The previous sections, where only proper rotations 
were considered, provide the full solution of the 
problem (of misorientation-angle and misorientation- 
axis distributions) in the sense of the first approach. 
With the second approach, the issue is more complex. 
The composition of two symmetries on both sides of a 
proper rotation is a proper rotation if both symmetries 
are proper or if they are improper. Besides the case 
when both symmetry groups contain inversion, these 
two configurations are distinguishable and, as such, can 
be treated separately from the viewpoint of texture 
analysis (see Fig. 3). From another viewpoint (of 

(a) 

i 

(b) 
Fig. 3. The symmetries of the first object and the second one are C i 

(inversion) and C s (mirror plane), respectively. When both 
symmetry operations are applied, the initial configuration (a) is 
changed to the final one (b). The same result can be obtained by 
applying proper operation of rotation by rt about an axis 
perpendicular to the mirror plane, which is equal to (inversion) o 
(mirror plane). Although these two configurations are equivalent, 
one can be distinguished from the other: in (a) left gloves of both 
objects are related by simple translation, whereas in (b) this occurs 
for right gloves. 

Table 2. Groups P(G) and Q(G) corresponding to the 
crystallographic groups (G) containing improper sym- 

metry operations 

For a group G without improper symmetry operations, there occurs 
P(G) = Q(G) = G. The relation P(D3h ) : D3 ~), where D~ ') denotes D 3 
with principal axis along z and twofold axis along y, appears in the first 
table because in International Tables for  X-ray Crystallography (1952) 
the twofold axis of D3h is fixed as vertical (y) whereas it is horizontal 
(x) for D 3 . 

G C, 
P(G) C l 
Q( G) C 2 

G C, 
P ( G ) =  C 1 

Q(G) 

$4 C2~ C3h C3~ C4~ D~ C6,, D3h T d 
c~ c: c~ c, c, o~ c~ o~"' r 
C 4 D 2 C 6 D 3 D 4 D 4 D 6 D 6 0 

C~ C3i C4h C6h D2h D3d D4h D6, T h O h 

C 2 C 3 C 4 C 6 D 2 D 3 D 4 D 6 T O 

boundary properties, for example), however, these 
configurations are the same and this means that 
additional equivalences between rotations must be 
taken into account. This leads to new Voronoi 
tessellations and new asymmetric domains. Following 
the conventional approach, it is appropriate to consider 
the rotation angle only for proper rotations. Thus, in 
order to calculate the distributions of misorientation 
angles and distributions of corresponding rotation axes, 
only parts of the asymmetric domains contained inside 
the first component of the rotation manifold are needed. 
What considerably simplifies the task is that they can be 
described in a way similar to that used in the previous 
sections, i.e. by specifying (G'L, G~)/Gc with groups 
G~., G,~ and Gc containing only proper symmetry 
operations. This automatically gives the sought dis- 
tributions and the forms of the domains can be deduced. 
The group on the right side of the slash (Gc) still 
determines equivalences between points with the same 
rotation angles but it does not represent the group of 
common symmetry operations any more. 

Appropriate expressions will be listed below for the 
following separately considered cases: 

(A) Both groups GR and GL contain only proper 
symmetry operations. There are no equivalences 
between points in different components of the rotation 
manifold and, thus, the asymmetric domain must 
consist of two parts; one part in each of the 
components. With the correspondence between proper 
and improper rotations established by the relation 
(improper rotation) -- (proper rotation) o (inversion), 
both components can be tessellated in the same way. 
The asymmetric domain can be obtained by choosing 
(as its part in each of the components) the same 
region as the domain for (GL, GR) in the previous 
section. 

In all remaining cases, there are equivalences 
between points in different components and the asym- 
metric domain can be confined to the component of the 
identity. 
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Table 3. Asymmetric domains of the pairs (G r, GR) for groups Gt. and G R containing improper symmetry operations 
but without inversion 

The diagonal entries of the table for G R = G = Gt would be given by P(G)/Q(G), e.g., for (T d, Td), one would have P(Td)IQ(Td) = TIO. The 
symbol C~2 ") denotes C 2 with rotation axis along (.) and ~n) denotes D n with principal axis along z and twofold axis along (.). The axis w is the 
bisector of the angle between x and y. 

Td D3h C6~ Dza C4~ 
c, o D~'/G D. D6c2~.,, / 04 I)4 T/ C,, D2/C4 D4/C2 
~2~ 0/C2 D?~ x) C6/D2 D4/C2 C4//D2 

D~ /C6 D6/C3 D,2 C' D ' 2  • csh (G, o) ,t~) 
C3v (C 3, O) D~s)/Ds C6/D 3 Dl2 
C4~ o/e~ ~) D,2/C~: ) C,2/D2 D,/D~ ") 
Dzd T/D4 D12/C~2 ) D12/C2 
C6~ (Cs, 0)/C2 D6/D s 
Dab (Cs, O)/C~z v) 

C3v C3h 

DD~ )) Cs/C2 
Cl2 

C6/~ "~ D6 

c2v s, 

D2 G 
Dt2*> I C2 

(B) Only one of the groups contains improper 
symmetry operations. Let it be G r. The distin- 
guished points of the first component are obtained 
by composing proper symmetry operations of GL 
with all elements of G R. Therefore, the tessellation 
of the first component and, thus, the appropriate 
asymmetric domain are the same as the tessellation 
and the domain for (P(Gr), G R), where P(G) is the 
subgroup of G consisting of proper rotations (Table 
2). 

(C) Both groups G R and Gt. contain inversion. 
Inversion commutes with all rotations and, thus, the 
configuration of objects obtained by applying improper 
symmetry operations on both sides of their misorienta- 
tion can be obtained by applying some proper opera- 
tions of the symmetry groups. The asymmetric domain 
is the same as that for (P(Gr), P(GR)) from the previous 
section. 

(D) Both groups G R and Gt contain improper 
symmetry operations but only one of them, say G r, 
contains inversion. The two resulting configurations 
of objects (first obtained by applying proper 
symmetry operations to both sides, second, by 
applying improper operations) are distinguishable 
(Fig. 3) but corresponding rotations are considered 
to be equivalent. To simplify the description of the 
asymmetric domain, let I(G) denote a group 
generated from generators of G and inversion. 
Moreover, let Q ( G ) = P ( I ( G ) )  (Table 2). The 
asymmetric domain in the space of proper rotations 
is the same as the domain of (P(GL), Q(GR) ) from 
the previous section. 

With the sought distributions in mind, the contents of 
points (A)-(D) can be collected in a brief statement: if 
one of the groups (say G R) contains only proper 
symmetry operations or one of them (GL) contains 
inversion then the distributions of misorientation angles 
and corresponding axes for the pair (G t, GR) are the 
same as for (P(GL), Q(GR) ) . 

(E) Both groups G R and Gt contain improper 
symmetry operations but none of them contains 

inversion. Analogously to point (D), the application 
of proper symmetry operations to both sides of the 
proper rotation leads to a different configuration from 
the application of improper operations. As for the 
asymmetric domains, they must be determined 
separately for particular pairs because there is no 
simple relation to the results of the previous sections. 
As before, the subgroup diagram can be used to reduce 
the number of cases that should be considered. If the 
group G r is a crystallographic subgroup of G R, then 
there exists a setting in which all elements of G r are 
common symmetry operations. In such a case, all 
distinguished points in the first component 
correspond to elements of P(GR), i.e. the asymmetric 
domain of the pair is part of the domain of P(GR). 
More precisely, it is given by P(GR)/Q(GL). This 
approach has the disadvantage of forcing one to 
accept awkward settings for crystal coordinate 
systems. The results corresponding to the standard 
settings of the coordinate systems (International 
Tables for X-ray Crystallography, 1952) are given in 
Table 3. 

As in the previous section, the sought distributions of 
misorientation angle and misorientation axis are fully 
determined by the pair or group given on the left side of 
the slash. The distributions for most of them are already 
known. The only complication appears when that group 

() 
happens to be D), ; in order to obtain the misorientation 
axis distribution q from that for D n, the latter must be 
rotated around the z axis by the angle between (.) and 
the x axis. The misorientation-angle distribution in that 
case is the same as for Dn. 

To close this article, it is worth mentioning that the 
case of indistinguishable objects has a third feature: the 
misorientation-angle and misorientation-axis distribu- 
tions are determined by their proper symmetry opera- 
tions regardless of the other elements of the complete 
symmetry group, i.e. it does not matter whether the 
group contains inversion or other improper rotations or 
it does not. It follows directly from the applicable points 
(A), (C) and (E). 
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APPENDIX A 

Solid angle based on the common of three 
spherical caps 

The solid angle S 3 based on the common of three 
spherical caps can be expressed as 

3 
s3 : a + ~ Ri - ( ~  - T 0), 

i=1 

where T~ is the solid angle based on the ith cap, i.e. 
T~ = Sl(pi), Q is the solid angle corresponding to the 
hexagon (01P302P103P 2) with vertices at the centres of 
the caps and the outer cross points of the caps' edges 
(see Fig. 4), T O is the solid angle based on the part of 
the ith cap that is outside the hexagon; if ~i is the 
internal vertex angle of the hexagon at the centre of the 
ith cap, then T O : [1 -~i /(27r)]Ti ,  R i is the common 
one of caps with radii py and Pk, where i ~ j  ~ k ~=i 
(i,j ,  k = 1,2, 3) and, thus, R i : S2(p j, Pk: ~i)" 

Q is equal to the sum of solid angles based on the four 
spherical triangles (OtP302), (02P103), (03P201) and 
(010203),  of which the hexagon is composed. For each 
spherical triangle, the solid angle is equal to the sum of 
its internal vertex angles minus ~r. The vertex angles, in 
turn, cao be expressed through the side angles Pi and ~i 

Fig. 4. Schematic diagram for the derivative of S 3. 

using the cosine theorem of spherical geometry [e.g. 
A = C(p 1, ~3; Pz)]. Also, ~Pi is the sum of three such 
angles with a vertex at the centre of the ith cap. The 
final result reduces to the formula for S3(p 1, P2, P3; 
~l, ~z, ~3) given in the main body of the paper. 
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